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Sarcasm is a sophisticated form of irony that is commonly found in social networks. 
It highly disrupts computational systems that harness this data to perform tasks 
such as sentiment analysis, opinion mining, author profiling, and harassment 
detection. 

Sarcasm detection is an essential tool in the text classification for dealing with this 
sophisticated emergent. The performance of sarcasm classifier is important for 
accurate predictions when processing expressions in the textual data. 

Our goal is to develop a new model to implement the sarcasm detection with good 
performance.

Motivation



Dataset

Sarcasm labels are provided by the authors themselves.

Authors also rephrased the sarcastic text to convey the same intended message without 
using sarcasm.



Task

The main goal of this project is to determine the sarcasm in a tweet. 

The task is to build up a model to determine sarcasm given a sarcastic 
text and its non-sarcastic rephrase while two texts convey the  same  
meaning



Baseline

Several common mature methods on binary classification are listed as follows:

1. LogisticRegression
2. GaussianNB
3. KNeighborsClassifier
4. SVC
5. DecisionTreeClassifier
6. Random



Experiment and Result

1. Data Augmentation
paired = data[data['rephrase'].notnull()][['tweet', 'rephrase']]

part1 = pd.DataFrame(paired.head(paired.shape[0] ./ 2))
part1['sarcastic'] = 0

part2 = pd.DataFrame(paired.tail(paired.shape[0] - paired.shape[0] ./ 2))
part2.rename({'tweet': 'rephrase', 'rephrase': 'tweet'},
            inplace=True, axis='columns')
part2['sarcastic'] = 1

paired_shuffled = shuffle(pd.concat([part1, part2]), random_state=seed)
paired_shuffled



Experiment and Result

2. Data Preprocess

class DataPreprocess:

      ...

     def ._call._(self, tweet):

       tweet = self.replace_emojis(tweet)

       tweet = self.replace_hashtags(tweet)

       tweet = self.replace_link(tweet)

       tweet = self.replace_mentions(tweet)

       return tweet

preprocess = DataPreprocess()

preprocess("Hi, we are @team15 😄. My personal page "

             "is http:./6301.com/team15/. 6301 is" 

             "nice.")

Output:

Hi, we are @user . My personal page is #link. 6301 is nice.



Experiment and Result

3. Baseline Accuracy before/after Preprocessing

def task_baseline(data_df, X_train, X_col1_test, X_col2_test,
                  y_train, y_test):
   # training
   classifiers = [LogisticRegression(solver='lbfgs', ...),
                  GaussianNB(),
                  KNeighborsClassifier(),
                  SVC(gamma='scale', probability=True,...),
                  DecisionTreeClassifier(random_state=seed)]
   names, accuracies = [], []

   for clf in tqdm(classifiers):
       ...

   # random
   ...

   res_df = pd.DataFrame({'classifier': names,
                          'accuracy': accuracies})
   display(res_df.style.highlight_max(['accuracy']))

Classifier Non-preprocess 
Acc

Preprocess Acc

1 LogisticRegression 0.730 0.756

2 Gaussian 0.443 0.431

3 KNeighborsClassifier 0.092 0.132

4 SVC 0.701 0.770

5 DecisionTree 0.402 0.460

6 Random 0.500 0.501



Experiment and Result

4.1 Bert

bert_model = BertForSequenceClassification \

.from_pretrained('bert-base-cased') \

.to(device)

bert_trainer = Trainer(...) # 8 epochs

bert_trainer.train()

bert_trainer.evaluate()

bert_result = bert_trainer.evaluate(

eval_dataset=test_bert, 

metric_key_prefix='test')

ax = sns.heatmap(cf_matrix, annot=True, 

cmap='Blues', fmt='d')

BERT can consider the full context of a word under 
long context. 

We used BERT base cased model for the sequence 
classification and fine-tuned with preprocessing and 
BertTokenizer. 

The Transformers library from 
Hugging Face was used to 
train and evaluate the model.

Sample Accuracy ~= 93%



Experiment and Result

4.2 GPT2

gpt_model = 
GPT2ForSequenceClassification.from_pretrained(

'remotejob/tweetsDISTILGPT2fi_v4', num_labels=2)
gpt_model.config.pad_token_id = 
gpt_model.config.eos_token_id
gpt_model = gpt_model.to(device)

gpt_trainer = Trainer(
   model=gpt_model,
   args=training_args,
   train_dataset=train_gpt,
   eval_dataset=val_gpt,
   compute_metrics = compute_metrics
)

gpt_trainer.train()
gpt_trainer.evaluate()

GPT-2 has 1.5 billion parameters, used to be one of 
the largest and most powerful language models.

We used the GPT-2 model for sequence 
classification and fine-tuned on the sarcasm 
detection task. 

The library from hugging face named 
"tweetsDISTILGPT2fi\_v4" and the corresponding 
tokenizer were used to train and evaluate the 
performance of model on the datasets.



Experiment and Result

4.3 Logistic Regression / SVM with BertTokenizer

logreg = LogisticRegression(solver='lbfgs', 

random_state=seed)

logreg.fit(X_train, y_train)

svc = SVC(gamma='scale', probability=True, 

random_state=seed)

svc.fit(X_train, y_train)

clf_evaluate(logreg, X_col1_val, X_col2_val, y_val)

svc_result = clf_evaluate(svc, X_col1_test, X_col2_test, 

y_test)

{'test_accuracy': 0.9080459770114943,

 'test_f1': 0.9111111111111111,

 'test_precision': 0.9318181818181818,

 'test_recall': 0.8913043478260869}

1. Compared to TF-IDF, the BERT 
tokenizer is better at capturing the 
complex semantic information of 
words.

2. The BERT model has been 
pre-trained on a large dataset, the 
tokenizer designed for it has better 
generalization capabilities as well. 



Overall Result

Our best-performing model is BERT, which achieves an accuracy of 0.9195. 

The fine-tuned GPT-2 model achieved the lowest performance than any other BERT related method, 
which is still competitive in baseline with and without preprocessing.

The logistic regression model achieved an accuracy of about 0.8966. 

The support vector machine (SVM) model also achieved an accuracy of 0.8966. 

When applying the BERT tokenizer to the SVM and logistic regression models, we observed an 
improvement in accuracy, which 
suggests that the use of BERT em
-beddings helped to result in better 
performance.

For comparison: The raw 
performance of GPT-3.5-Turbo among
valid response is 86%



Conclusion

From the results, it is clear that fine-tuned BERT and the logistic regression model using embeddings 
from BERT performed the best in detecting sarcasm in paired tweets. This indicates that contextualized 
word embeddings and fine-tuning on task-specific data are effective in capturing the nuances of sarcasm 
in paired tweets.

Overall, the results suggest that fine-tuning on task-specific data and using contextualized word 
embeddings are effective approaches for detecting 

            sarcasm in paired tweets. Classifier Non-preprocess Preprocess

1 Logistic
Regression

0.730 0.756

2 Gaussian 0.443 0.431

3 KNeighbors
Classifier

0.092 0.132

4 SVC 0.701 0.770

5 DecisionTree 0.402 0.460

6 Random 0.500 0.501
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