
 Sarcasm detector using
machine learning algorithms

By Project group 15

Sarcasm is a sophisticated form of irony that is commonly found in social networks.
It highly disrupts computational systems that harness this data to perform tasks
such as sentiment analysis, opinion mining, author profiling, and harassment
detection.

Sarcasm detection is an essential tool in the text classification for dealing with this
sophisticated emergent. The performance of sarcasm classifier is important for
accurate predictions when processing expressions in the textual data.

Our goal is to develop a new model to implement the sarcasm detection with good
performance.

Motivation

Dataset

Sarcasm labels are provided by the authors themselves.

Authors also rephrased the sarcastic text to convey the same intended message without
using sarcasm.

Task

The main goal of this project is to determine the sarcasm in a tweet.

The task is to build up a model to determine sarcasm given a sarcastic
text and its non-sarcastic rephrase while two texts convey the same
meaning

Baseline

Several common mature methods on binary classification are listed as follows:

1. LogisticRegression
2. GaussianNB
3. KNeighborsClassifier
4. SVC
5. DecisionTreeClassifier
6. Random

Experiment and Result

1. Data Augmentation
paired = data[data['rephrase'].notnull()][['tweet', 'rephrase']]

part1 = pd.DataFrame(paired.head(paired.shape[0] ./ 2))
part1['sarcastic'] = 0

part2 = pd.DataFrame(paired.tail(paired.shape[0] - paired.shape[0] ./ 2))
part2.rename({'tweet': 'rephrase', 'rephrase': 'tweet'},
 inplace=True, axis='columns')
part2['sarcastic'] = 1

paired_shuffled = shuffle(pd.concat([part1, part2]), random_state=seed)
paired_shuffled

Experiment and Result

2. Data Preprocess

class DataPreprocess:

 ...

 def ._call._(self, tweet):

 tweet = self.replace_emojis(tweet)

 tweet = self.replace_hashtags(tweet)

 tweet = self.replace_link(tweet)

 tweet = self.replace_mentions(tweet)

 return tweet

preprocess = DataPreprocess()

preprocess("Hi, we are @team15 😄. My personal page "

 "is http:./6301.com/team15/. 6301 is"

 "nice.")

Output:

Hi, we are @user . My personal page is #link. 6301 is nice.

Experiment and Result

3. Baseline Accuracy before/after Preprocessing

def task_baseline(data_df, X_train, X_col1_test, X_col2_test,
 y_train, y_test):
 # training
 classifiers = [LogisticRegression(solver='lbfgs', ...),
 GaussianNB(),
 KNeighborsClassifier(),
 SVC(gamma='scale', probability=True,...),
 DecisionTreeClassifier(random_state=seed)]
 names, accuracies = [], []

 for clf in tqdm(classifiers):
 ...

 # random
 ...

 res_df = pd.DataFrame({'classifier': names,
 'accuracy': accuracies})
 display(res_df.style.highlight_max(['accuracy']))

Classifier Non-preprocess
Acc

Preprocess Acc

1 LogisticRegression 0.730 0.756

2 Gaussian 0.443 0.431

3 KNeighborsClassifier 0.092 0.132

4 SVC 0.701 0.770

5 DecisionTree 0.402 0.460

6 Random 0.500 0.501

Experiment and Result

4.1 Bert

bert_model = BertForSequenceClassification \

.from_pretrained('bert-base-cased') \

.to(device)

bert_trainer = Trainer(...) # 8 epochs

bert_trainer.train()

bert_trainer.evaluate()

bert_result = bert_trainer.evaluate(

eval_dataset=test_bert,

metric_key_prefix='test')

ax = sns.heatmap(cf_matrix, annot=True,

cmap='Blues', fmt='d')

BERT can consider the full context of a word under
long context.

We used BERT base cased model for the sequence
classification and fine-tuned with preprocessing and
BertTokenizer.

The Transformers library from
Hugging Face was used to
train and evaluate the model.

Sample Accuracy ~= 93%

Experiment and Result

4.2 GPT2

gpt_model =
GPT2ForSequenceClassification.from_pretrained(

'remotejob/tweetsDISTILGPT2fi_v4', num_labels=2)
gpt_model.config.pad_token_id =
gpt_model.config.eos_token_id
gpt_model = gpt_model.to(device)

gpt_trainer = Trainer(
 model=gpt_model,
 args=training_args,
 train_dataset=train_gpt,
 eval_dataset=val_gpt,
 compute_metrics = compute_metrics
)

gpt_trainer.train()
gpt_trainer.evaluate()

GPT-2 has 1.5 billion parameters, used to be one of
the largest and most powerful language models.

We used the GPT-2 model for sequence
classification and fine-tuned on the sarcasm
detection task.

The library from hugging face named
"tweetsDISTILGPT2fi_v4" and the corresponding
tokenizer were used to train and evaluate the
performance of model on the datasets.

Experiment and Result

4.3 Logistic Regression / SVM with BertTokenizer

logreg = LogisticRegression(solver='lbfgs',

random_state=seed)

logreg.fit(X_train, y_train)

svc = SVC(gamma='scale', probability=True,

random_state=seed)

svc.fit(X_train, y_train)

clf_evaluate(logreg, X_col1_val, X_col2_val, y_val)

svc_result = clf_evaluate(svc, X_col1_test, X_col2_test,

y_test)

{'test_accuracy': 0.9080459770114943,

 'test_f1': 0.9111111111111111,

 'test_precision': 0.9318181818181818,

 'test_recall': 0.8913043478260869}

1. Compared to TF-IDF, the BERT
tokenizer is better at capturing the
complex semantic information of
words.

2. The BERT model has been
pre-trained on a large dataset, the
tokenizer designed for it has better
generalization capabilities as well.

Overall Result

Our best-performing model is BERT, which achieves an accuracy of 0.9195.

The fine-tuned GPT-2 model achieved the lowest performance than any other BERT related method,
which is still competitive in baseline with and without preprocessing.

The logistic regression model achieved an accuracy of about 0.8966.

The support vector machine (SVM) model also achieved an accuracy of 0.8966.

When applying the BERT tokenizer to the SVM and logistic regression models, we observed an
improvement in accuracy, which
suggests that the use of BERT em
-beddings helped to result in better
performance.

For comparison: The raw
performance of GPT-3.5-Turbo among
valid response is 86%

Conclusion

From the results, it is clear that fine-tuned BERT and the logistic regression model using embeddings
from BERT performed the best in detecting sarcasm in paired tweets. This indicates that contextualized
word embeddings and fine-tuning on task-specific data are effective in capturing the nuances of sarcasm
in paired tweets.

Overall, the results suggest that fine-tuning on task-specific data and using contextualized word
embeddings are effective approaches for detecting

 sarcasm in paired tweets. Classifier Non-preprocess Preprocess

1 Logistic
Regression

0.730 0.756

2 Gaussian 0.443 0.431

3 KNeighbors
Classifier

0.092 0.132

4 SVC 0.701 0.770

5 DecisionTree 0.402 0.460

6 Random 0.500 0.501

References
- https://huggingface.co/bert-base-cased
- Computing metrix github

https://github.com/huggingface/notebooks/blob/6b19898fe599e1b2bd40
1fc260ee5a45824f1420/sagemaker/06_sagemaker_metrics/scripts/train.p
y#L51

- Bert Dataset github
https://github.com/aws-samples/aws-ai-ml-workshop-kr/blob/147e49d71
b6fe093a6190b748bfbae44418d2e0a/sagemaker/sm-kornlp/question-ans
wering/scripts/train.py#L53

https://github.com/huggingface/notebooks/blob/6b19898fe599e1b2bd401fc260ee5a45824f1420/sagemaker/06_sagemaker_metrics/scripts/train.py#L51
https://github.com/aws-samples/aws-ai-ml-workshop-kr/blob/147e49d71b6fe093a6190b748bfbae44418d2e0a/sagemaker/sm-kornlp/question-answering/scripts/train.py#L53

